Show simple item record

dc.contributor.authorPirani, Mohammad
dc.date.accessioned2014-08-19 12:40:48 (GMT)
dc.date.available2014-08-19 12:40:48 (GMT)
dc.date.issued2014-08-19
dc.date.submitted2014
dc.identifier.urihttp://hdl.handle.net/10012/8649
dc.description.abstractLinear consensus and opinion dynamics in networks that contain stubborn agents are studied in this thesis. Previous works have shown that the convergence rate of such dynam- ics is given by the smallest eigenvalue of the grounded Laplacian induced by the stubborn agents. Building on those works, we study the smallest eigenvalue of grounded Laplacian matrices, and provide bounds on this eigenvalue in terms of the number of edges between the grounded nodes and the rest of the network, bottlenecks in the network, and the small- est component of the eigenvector for the smallest eigenvalue. We show that these bounds are tight when the smallest eigenvector component is close to the largest component, and provide graph-theoretic conditions that cause the smallest component to converge to the largest component. An outcome of our analysis is a tight bound for Erdos-Renyi random graphs and d-regular random graphs. Moreover, we de ne a new notion of centrality for each node in the network based upon the smallest eigenvalue obtained by removing that node from the network. We show that this centrality can deviate from other well known centralities. Finally we interpret this centrality via the notion of absorption time in a random walk on the graph.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.titleOn Spectral Properties of the Grounded Laplacian Matrixen
dc.typeMaster Thesisen
dc.pendingfalse
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages