Show simple item record

dc.contributor.authorWong, Lawrence
dc.date.accessioned2014-08-07 12:38:50 (GMT)
dc.date.available2014-08-07 12:38:50 (GMT)
dc.date.issued2014-08-07
dc.date.submitted2014
dc.identifier.urihttp://hdl.handle.net/10012/8608
dc.description.abstractUltrasound is a popular technique for industrial non-destructive testing (NDT) applications. By sending ultrasonic waves into an object and observing the amplitude and the delay of the reflected or transmitted waves, one can characterize the material, measure the thickness of the object, and detect discontinuities (flaws) as well as the size, location, and orientation of the defects in the object. Traditionally, ultrasonic transducers for NDT are made with piezoelectric crystals. Meanwhile, another class of ultrasonic transducers known as capacitive micromachined ultrasonic transducers (CMUTs) have become popular in medical ultrasound research because of their large bandwidths and other attributes that allow them to be integrated into the tip of a catheter. However, CMUTs have not been widely adopted in ultrasonic NDT applications. In this thesis, three important CMUTs characteristics that could potentially make them attractive for NDT applications are introduced and demonstrated. First, CMUTs can be beneficial to NDT because the fabrication techniques of CMUTs can easily be used to implement high-frequency, high-density phased arrays, which are essential for high resolution scanning. Surface scanning using a 2-D row-column addressed CMUT array was demonstrated. Secondly, CMUTs can be integrated with supporting microelectronic circuits, thus one can implement a highly integrated transducer system, which can be useful in structural health monitoring NDT applications. Front-end microelectronic circuits that include a transmit pulser and a receive amplifier were designed, tested, and characterized. Thirdly, CMUTs are suitable for air-coupled applications because of their low acoustic impedance at resonance. Air-coupled CMUTs fabricated in a standard RF-MEMS process were characterized and tested. This thesis concludes with an analysis of the potential usefulness of CMUTs for ultrasonic NDT. While many ultrasonic NDT applications are better off being performed using conventional piezoelectric transducers, CMUTs can and should be used in certain NDT applications that can take advantage of the beneficial characteristics of this exciting transducer technology.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectMEMSen
dc.subjectCMUTen
dc.subjectUltrasounden
dc.subjectNon-destructive Testingen
dc.titleCapacitive Micromachined Ultrasonic Transducers for Non-destructive Testing Applicationsen
dc.typeDoctoral Thesisen
dc.pendingfalse
dc.subject.programSystem Design Engineeringen
uws-etd.degree.departmentSystems Design Engineeringen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages