UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Revisiting the security model for aggregate signature schemes

Loading...
Thumbnail Image

Date

2014-05-26

Authors

Lacharité, Marie-Sarah

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Aggregate signature schemes combine the digital signatures of multiple users on different messages into one single signature. The Boneh-Gentry-Lynn-Shacham (BGLS) aggregate signature scheme is one such scheme, based on pairings, where anyone can aggregate the signatures in any order. We suggest improvements to its current chosen-key security model. In particular, we argue that the scheme should be resistant to attackers that can adaptively choose their target users, and either replace other users' public keys or expose other users' private keys. We compare these new types of forgers to the original targeted-user forger, building up to the stronger replacement-and-exposure forger. Finally, we present a security reduction for a variant of the BGLS aggregate signature scheme with respect to this new notion of forgery. Recent attacks by Joux and others on the discrete logarithm problem in small-characteristic finite fields dramatically reduced the security of many type I pairings. Therefore, we explore security reductions for BGLS with type III rather than type I pairings. Although our reductions are specific to BGLS, we believe that other aggregate signature schemes could benefit from similar changes to their security models.

Description

Keywords

cryptography, aggregate signatures, security reduction, digital signatures

LC Keywords

Citation