The University of Waterloo Libraries will be performing maintenance on UWSpace tomorrow, November 5th, 2025, from 10 am – 6 pm EST.
UWSpace will be offline for all UW community members during this time. Please avoid submitting items to UWSpace until November 7th, 2025.

Analysis of the Weight Function for Implicit Moving Least Squares Techniques

Loading...
Thumbnail Image

Authors

Yao, Zhujun

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

In this thesis, I analyze the weight functions used in moving least squares (MLS) methods to construct implicit surfaces that interpolate or approximate polygon soup. I found that one previous method that presented an analytic solution to the integrated moving least squares method has issues with degeneracies because they changed the weight functions to decrease too slowly. Inspired by their method, I derived a bound for the choice of weight function for implicit moving least squares (IMLS) methods to avoid these degeneracies in two-dimensions and in three-dimensions. Based on this bound, I give a theoretical proof of the correctness of the moving least squares interpolation and approximation scheme with weight function used in Shen et al. when used on closed polyhedrons. Further, previous IMLS implicit surface reconstruction algorithms that ll holes and gaps create surfaces with obvious bulges due to an intrinsic property of MLS. I propose a generalized IMLS method using a Gaussian distribution function to re-weight each polygon, making nearer polygons dominate and reducing the bulges on holes and gaps.

Description

LC Subject Headings

Citation