On the Complexity of the Circuit Obfuscation Problem for Split Manufacturing

Loading...
Thumbnail Image

Authors

El Massad, Mohamed

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Recent work in the area of computer hardware security introduced a number of interesting computational problems in the context of directed acyclic graphs (DAGs). In this thesis, we pick one of these problems, circuit obfuscation --- a combinatorial optimization problem --- and study its computational complexity. First, we prove that the problem is \cnph. Next, we show it to be in the class of MAX-SNP optimization problems, which means it is inapproximable within a certain constant (2.08) unless P=NP. We then use a reduction from the maximum common edge subgraph problem to prove a lower bound on the absolute error guarantee achievable for the problem by a polynomial-time algorithm. Given that the decision version of the problem is in NP, we investigate the possibility of efficiently solving the problem using a SAT solver and report on our results. Finally, we study a slightly modified version of the problem underlying a generalized hardware security technique and prove it to be NP-hard as well.

Description

Keywords

LC Subject Headings

Citation