Show simple item record

dc.contributor.authorSardana, Noel 13:11:20 (GMT) 13:11:20 (GMT)
dc.description.abstractIn this thesis, we address the challenge of information overload in online participatory messaging environments using an artificial intelligence approach drawn from research in multiagent systems trust modeling. In particular, we reason about which messages to show to users based on modeling both credibility and similarity, motivated by a need to discriminate between (false) popular and truly beneficial messages. Our work focuses on environments wherein users' ratings on messages reveal their preferences and where the trustworthiness of those ratings then needs to be modeled, in order to make effective recommendations. We first present one solution, CredTrust, and demonstrate its efficacy in comparison with LOAR --- an established trust-based recommender system applicable to participatory media networks which fails to incorporate the modeling of credibility. Validation for our framework is provided through the simulation of an environment where the ground truth of the benefit of a message to a user is known. We are able to show that our approach performs well in terms of successfully recommending those messages with high predicted benefit and avoiding those messages with low predicted benefit. We continue by developing a new model for making recommendations that is grounded in Bayesian statistics and uses Partially Observable Markov Decision Processes (POMDPs). This model is an important next step, as both CredTrust and LOAR encode particular functions of user features (viz., similarity and credibility) when making recommendations; our new model, denoted POMDPTrust, learns the appropriate evaluation functions in order to make ``correct" belief updates about the usefulness of messages. We validate our new approach in simulation, showing that it outperforms both LOAR and CredTrust in a variety of agent scenarios. Furthermore, we demonstrate how POMDPTrust performs well against real world data sets from and In all, we offer a novel trust model which is shown, through simulation and real-world experimentation, to be an effective agent-based solution to the problem of managing the messages posted by users in participatory media networks.en
dc.publisherUniversity of Waterlooen
dc.subjectComputer Scienceen
dc.subjectArtificial Intelligenceen
dc.subjectMultiagent Systemsen
dc.subjectTrust Modelingen
dc.titleRecommending messages to users in participatory media environments: a Bayesian credibility approachen
dc.typeMaster Thesisen
dc.subject.programComputer Scienceen of Computer Scienceen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorCohen, Robin

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages