Show simple item record

dc.contributor.authorDeng, Qiaosi
dc.date.accessioned2014-01-23 20:45:15 (GMT)
dc.date.available2014-01-23 20:45:15 (GMT)
dc.date.issued2014-01-23
dc.date.submitted2014-01-20
dc.identifier.urihttp://hdl.handle.net/10012/8191
dc.description.abstractThis study revealed that ammonium ion exchange of natural zeolite could be a feasible method of nitrogen removal and recovery from permeate from anaerobic membrane bioreactors (AnMBRs). NaCl concentrations optimized for chemical regeneration in batch experiments did not match those in continuous column tests. Instead, the mass ratio of Na+ to Zeolite-NH4+-N was significant for improving regeneration efficiency in column experiments; this mass ratio was 750 g Na+/g Zeolite-NH4+-N required for regeneration efficiency over 90% in 2 hours at pH 9.  To decrease the NaCl dose in regeneration of exhausted zeolite, a high pH regeneration method was developed using an NaCl concentration of 10 g/L at pH 12 (the mass of Na+ to Zeolite-NH4+-N of 4.2 ) which achieved a regeneration efficiency about 85%. The recovery of ammonium nitrogen from the exhausted zeolite was assessed with air stripping followed by ammonia collection in an acid scrubber. The effects of shaking and air stripping were investigated in batch tests and the results showed the superiority of air stripping over shaking. Liquid circulation and air flow rates were varied for optimization of ammonia recovery in a continuous zeolite-packed column combined with a regeneration chamber and a stripping column. The liquid circulation rate had no significant effect on either the regeneration efficiency or the ammonia transfer efficiency from ammonium nitrogen to ammonia gas, while the ammonia transfer efficiency significantly increased with the air flow rate.  Furthermore, the effect of pH on ammonia recovery was tested. Both the regeneration efficiency and the ammonia transfer efficiency were significantly improved with increasing pH. When the pH was increased from 9.5 to 12, the regeneration efficiency increased from 9.2% to 84% and the ammonia transfer efficiency increased from 54% to 92%. The nitrogen recovery process that combines zeolite ammonium exchange and air stripping can decrease chemical costs for regeneration of exhausted zeolite and efficiently collect ammonium nitrogen to be reused as fertilizers. Hence, the integrated nitrogen process can resolve the challenge of nitrogen removal in anaerobic membrane bioreactors treating organic wastewater in sustainable manners.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectAmmoniaen
dc.subjectNatural zeoliteen
dc.subjectAnaerobic membrane bioreactorsen
dc.subjectRegenerationen
dc.subjectAlkaline pHen
dc.subjectAir strippingen
dc.titleAmmonia Removal and Recovery from Wastewater Using Natural Zeolite: An Integrated System for Regeneration by Air Stripping Followed Ion Exchangeen
dc.typeMaster Thesisen
dc.pendingfalse
dc.subject.programCivil Engineeringen
uws-etd.degree.departmentCivil and Environmental Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages