Show simple item record

dc.contributor.authorEftekharian, Amin
dc.date.accessioned2013-09-26 18:37:27 (GMT)
dc.date.available2014-06-04 05:00:38 (GMT)
dc.date.issued2013-09-26T18:37:27Z
dc.date.submitted2013-09-19
dc.identifier.urihttp://hdl.handle.net/10012/7928
dc.description.abstractA theoretical model with experimental verification is presented to enhance the quantum efficiency of a superconducting single-photon detector without increasing the length or thickness of the active element. The basic enhancement framework is based on: (1) Utilizing the plasmonic nature of a superconducting layer to increase the surface absorption of the input optical signal. (2) Enhancing the critical current of the nanowires by reducing the current crowding at the bend areas through optimally rounded-bend implementation. The experimental system quantum efficiency and fluctuation rates per second are assessed and compared to the proposed theoretical model. The model originated from an accurate description of the different liberation mechanisms of the nano-patterned superconducting films (vortex hopping and vortex-antivortex pairing). It is built complimentary to the existing, well-established models by considering the effects of quantum confinement on the singularities' energy states. The proposed model explains the dynamics of singularities for a wide range of temperatures and widths and describe an accurate count rate behavior for the structure. Furthermore, it explains the abnormal behaviors of the measured fluctuation rates occurring in wide nano-patterned superconducting structures below the critical temperature. In accordance to this model, it has been shown that for a typical strip width, not only is the vortex-antivortex liberation higher than the predicted rate, but also quantum tunneling is significant in certain conditions, and cannot be neglected as it has been in previous models. Also it is concluded that to satisfy both optical guiding and photon detection considerations of the design, the width and the thickness of the superconducting wires should be carefully determined in order to maintain the device sensitivity while crossing over from the current crowding to vortex-based detection mechanisms.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectnanowire superconducting single photon detectoren
dc.subjectplasmonicen
dc.titlePlasmonic Superconducting Single Photon Detectoren
dc.typeDoctoral Thesisen
dc.pendingtrueen
dc.subject.programElectrical and Computer Engineeringen
dc.description.embargoterms1 yearen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages