Show simple item record

dc.contributor.authorSchwartz, Tal Shimon
dc.date.accessioned2013-04-22 18:15:41 (GMT)
dc.date.available2013-04-22 18:15:41 (GMT)
dc.date.issued2013-04-22T18:15:41Z
dc.date.submitted2013
dc.identifier.urihttp://hdl.handle.net/10012/7418
dc.description.abstractDigital image acquisition can be a time consuming process for situations where high spatial resolution is required. As such, optimizing the acquisition mechanism is of high importance for many measurement applications. Acquiring such data through a dynamically small subset of measurement locations can address this problem. In such a case, the measured information can be regarded as incomplete, which necessitates the application of special reconstruction tools to recover the original data set. The reconstruction can be performed based on the concept of sparse signal representation. Recovering signals and images from their sub-Nyquist measurements forms the core idea of compressive sensing (CS). In this work, a CS-based data-guided statistical sparse measurements method is presented, implemented and evaluated. This method significantly improves image reconstruction from sparse measurements. In the data-guided statistical sparse measurements approach, signal sampling distribution is optimized for improving image reconstruction performance. The sampling distribution is based on underlying data rather than the commonly used uniform random distribution. The optimal sampling pattern probability is accomplished by learning process through two methods - direct and indirect. The direct method is implemented for learning a nonparametric probability density function directly from the dataset. The indirect learning method is implemented for cases where a mapping between extracted features and the probability density function is required. The unified model is implemented for different representation domains, including frequency domain and spatial domain. Experiments were performed for multiple applications such as optical coherence tomography, bridge structure vibration, robotic vision, 3D laser range measurements and fluorescence microscopy. Results show that the data-guided statistical sparse measurements method significantly outperforms the conventional CS reconstruction performance. Data-guided statistical sparse measurements method achieves much higher reconstruction signal-to-noise ratio for the same compression rate as the conventional CS. Alternatively, Data-guided statistical sparse measurements method achieves similar reconstruction signal-to-noise ratio as the conventional CS with significantly fewer samples.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectcompressive sensingen
dc.subjectcompressed samplingen
dc.subjectdigital image acquisitionen
dc.subjectsparse measurementsen
dc.titleData-guided statistical sparse measurements modeling for compressive sensingen
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programSystem Design Engineeringen
uws-etd.degree.departmentSystems Design Engineeringen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages