Show simple item record

dc.contributor.authorKapiturova, Maria
dc.date.accessioned2013-02-15 19:59:12 (GMT)
dc.date.available2013-02-15 19:59:12 (GMT)
dc.date.issued2013-02-15T19:59:12Z
dc.date.submitted2013
dc.identifier.urihttp://hdl.handle.net/10012/7341
dc.description.abstractThis research investigates fracture behaviour in the Cosserat materials. The Cosserat elasticity description of the materials incorporates a characteristic length scale (e.g. grains, particles, fibres, etc.) into the model. The characteristic length scale in such materials is known to significantly influence the macroscopic behaviour of the whole body. Simulation of the fracture processes, such as crack opening and propagation, in Cosserat materials still remains a challenge for the scientific community. The goal of this thesis is to propose and validate a two dimensional extended finite element method model of edge cracks within the Cosserat elasticity theory framework. The crack modelling was conducted using the Finite Element Method (FEM) and eXtended Finite Element Method (XFEM) implemented in the Matlab code. The strong and weak formulations of the problem and the discrete XFEM equations are presented in the thesis. Mode I and II edge crack models in a Cosserat medium are discussed and verified through a series of patch and convergence tests. In addition, the numerical evaluation of the J-integral for the Cosserat medium is presented, and the J-integral for the Cosserat medium is compared to the J-integral for the classical elasticity. The XFEM/Cosserat method is shown to be robust and able to effectively model the edge crack problems in a Cosserat medium. Moreover, the Cosserat elastic parameter is found to be a powerful coupling tool between the microrotations and the translations. The Cosserat J-integral differs from the classical J-integral by 2% to 40%, for a given crack depending on the micropolar elastic coupling constant.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectcracksen
dc.subjectCosseraten
dc.titleSimulation of Cracks in a Cosserat Medium using the eXtended Finite Element Methoden
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programCivil Engineeringen
uws-etd.degree.departmentCivil and Environmental Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages