UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Fast Order Basis and Kernel Basis Computation and Related Problems

Loading...
Thumbnail Image

Date

2013-01-28T16:03:52Z

Authors

Zhou, Wei

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

In this thesis, we present efficient deterministic algorithms for polynomial matrix computation problems, including the computation of order basis, minimal kernel basis, matrix inverse, column basis, unimodular completion, determinant, Hermite normal form, rank and rank profile for matrices of univariate polynomials over a field. The algorithm for kernel basis computation also immediately provides an efficient deterministic algorithm for solving linear systems. The algorithm for column basis also gives efficient deterministic algorithms for computing matrix GCDs, column reduced forms, and Popov normal forms for matrices of any dimension and any rank. We reduce all these problems to polynomial matrix multiplications. The computational costs of our algorithms are then similar to the costs of multiplying matrices, whose dimensions match the input matrix dimensions in the original problems, and whose degrees equal the average column degrees of the original input matrices in most cases. The use of the average column degrees instead of the commonly used matrix degrees, or equivalently the maximum column degrees, makes our computational costs more precise and tighter. In addition, the shifted minimal bases computed by our algorithms are more general than the standard minimal bases.

Description

Keywords

polynomial matrix computation, algorithm, complexity, computer algebra, order basis, kernel basis, linear system solving, matrix inverse, determinant, unimodular completion, Popov form, Hermite form, column reduced form, GCD, matrix GCD, rank, rank profile, column basis

LC Keywords

Citation