Show simple item record

dc.contributor.authorChung, So-Ra (Serena)
dc.date.accessioned2013-01-25 14:07:17 (GMT)
dc.date.available2013-01-25 14:07:17 (GMT)
dc.date.issued2013-01-25T14:07:17Z
dc.date.submitted2012-10-29
dc.identifier.urihttp://hdl.handle.net/10012/7266
dc.description.abstractThis thesis provides analysis and modeling for one of the Micro-Eletro-Mechanical System (MEMS) electrostatic actuator that consists of a micro-plate at the end of a cantilever beam, and introduces different type of MEMS electrostatic actuator; a paddle structure, which is a micro-plate suspended by two cantilever beams on each side. An electrode plate is placed right under the micro-plate to apply an actuation voltage. A step-by-step analysis explains how to obtain each parameter used for the simulations. Static and dynamic models are presented with governing equations for the paddle-shaped MEMS electrostatic actuator. The key findings are that the proposed electrostatic MEMS demodulator architecture taking advantage of the resonance circuit principle not only theoretically work in analytical model, and numerical simulations, but also work in real life. For the Amplitude Modulations (AM) demodulations, simulations with various damping factors are provided, and experimental data are discussed. By measuring the displacement using the phase detector circuit and vibrometer, as a proof of versatility of the demodulation architecture based on the MEMS electrostatic actuator, the results from Frequency Modulations (FM), Amplitude Shift Keying (ASK), and Frequency Shift Keying (FSK) demodulation scheme experiments that are conducted with the physically identical dimensions and configuration are provided. The future plan for further analysis and experiment is discussed at the end.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectMEMSen
dc.subjectDemodulatoren
dc.subjectActuatoren
dc.titleMEMS Demodulator Based on Electrostatic Actuatoren
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programSystem Design Engineeringen
uws-etd.degree.departmentSystems Design Engineeringen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages