Show simple item record

dc.contributor.authorTao, Jianchen
dc.date.accessioned2013-01-23 14:48:30 (GMT)
dc.date.available2013-01-23 14:48:30 (GMT)
dc.date.issued2013-01-23T14:48:30Z
dc.date.submitted2013-01-16
dc.identifier.urihttp://hdl.handle.net/10012/7227
dc.description.abstractNowadays, the industrial standard for infrared imaging systems is to interconnect an infrared photodetector array with a silicon-based read-out-integrated circuit pixel by pixel through existing indium bumping technology for infrared scene detection and then the signal is output optically through a LCD or other imaging devices. Motivated by the high-cost and low-resolution of such configurations, technology that up-converts infrared light to visible light and in particular, an inorganic/organic hybrid imaging upconverter has been developed. The end goal was to provide a high-efficiency and high-resolution alternative for infrared imaging. The inorganic/organic hybrid architecture takes advantage of both the high quantum efficiency of photo-detection for inorganic semiconductors, and the low-cost processing and the topologically perfect structure of organic semiconductors that does not require lattice matching for materials. Based on previous single-element hybrid infrared upconverter designs, both pixel-less and pixel-lated hybrid infrared imaging devices are presented, with experimental results, in this thesis. The pixel-less hybrid infrared imaging upconverter suppresses the lateral carrier diffusion by using a hybrid Schottky junction with an intrinsic interconnection layer between the inorganic and organic parts. The device was fabricated in one large-area mesa and proved that the emitting light spatially correlated with the infrared imaging shone at its back. This device is the first-ever hybrid pixel-less infrared upconverter to successfully demonstrate the imaging of infrared patterns. In contrast, the pixel-lated device consisted of 128 by 128 pixels, and each pixel was an individually working infrared upconverter that integrated a heterojunction phototransistor (HPT) and an organic light emitting diode (OLED). The HPT provides not only the photoresponse upon incoming infrared light but also an amplification of the photocurrent. The pixel-lated device also successfully demonstrated the first-ever upconversion of infrared light, up-converting a light with a wavelength of 1.5 μm to 520 nm.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectSemiconductoren
dc.subjectUpconversionen
dc.subjectImagingen
dc.subjectInfrareden
dc.subjectPixel-lessen
dc.subjectPixel-lateden
dc.subjectHybriden
dc.subjectOrganicen
dc.subjectInorganicen
dc.titlePixel-less and Pixel-lated Inorganic/Organic Hybrid Infrared Imaging Upconversion Devicesen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages