UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Interactive Real Time Deep Brain Stimulation System

Loading...
Thumbnail Image

Date

2013-01-08T16:10:39Z

Authors

Saad, John Farid Hanna

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Deep Brain Stimulation (DBS) is a developing therapeutic technique with a high potential to control and treat central nervous system diseases through neuromodulation. DBS utilizes through implanted electrodes that are inserted in the targeted brain structure. Being an emerging technology; neuromodulation introduces many challenges that are not yet comprehensively identified, characterized and resolved. The advancement of this technique requires qualitative and quantitative perception of the brain response to electrical stimulation which is controlled by the electric field distribution within the brain tissue. This can be realized by formulating the tissue-field interaction such that we will have a better understanding of the spatial extent and the direct effects of deep brain stimulation (DBS) on neurons activity. The focus of this research is to develop a model for encoding and decoding the neuron activity in the DBS region and to address all the parameters that affect this activity in order to have a complete understanding of the DBS problem and to develop a brain model that can be readily used in DBS analysis. Our goal is to study the immediate direct effects of the stimulating field and examine where the beneficial effects of DBS originate since the mechanism of DBS is not yet fully understand and hence an inclusive comprehensive performance study will be done for the DBS problem.

Description

Keywords

DBS, Neuromodulation, Linear Filters

LC Keywords

Citation