Show simple item record

dc.contributor.authorKarim, Tasreen
dc.date.accessioned2012-08-24 17:57:33 (GMT)
dc.date.available2012-08-24 17:57:33 (GMT)
dc.date.issued2012-08-24T17:57:33Z
dc.date.submitted2012
dc.identifier.urihttp://hdl.handle.net/10012/6877
dc.description.abstractDesign metrics such as area, timing and power are generally considered as the primary criteria in the design of modern day circuits, however, the minimization of power supply noise, among other noise sources, is appreciably more important since not only can it cause a degradation in these parameters but can cause entire chips to fail. Ensuring the integrity of the power supply voltage in the power distribution network of a chip is therefore crucial to both building reliable circuits as well as preventing circuit performance degradation. Power supply noise concerns, predicted over two decades ago, continue to draw significant attention, and with present CMOS technology projected to keep on scaling, it is shown in this work that these issues are not expected to diminish. This research also considers the management and on-chip detection of power supply noise. There are various methods of managing power supply noise, with the use of decoupling capacitors being the most common technique for suppressing the noise. An in-depth analysis of decap structures including scaling effects is presented in this work with corroborating silicon results. The applicability of various decaps for given design constraints is provided. It is shown that MOS-metal hybrid structures can provide a significant increase in capacitance per unit area compared to traditional structures and will continue to be an important structure as technology continues to scale. Noise suppression by means of current shifting within the clock period of an ALU block is further shown to be an additional method of reducing the minimum voltage observed on its associated supply. A simple, and area and power efficient technique for on-chip supply noise detection is also proposed.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectpower supply noiseen
dc.subjectswitching noiseen
dc.titleOn-Chip Power Supply Noise: Scaling, Suppression and Detectionen
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages