Show simple item record

dc.contributor.authorMagesan, Easwar 19:58:15 (GMT) 19:58:15 (GMT)
dc.description.abstractIn practice, quantum systems are not completely isolated from their environment and the resulting system-environment interaction can lead to information leakage from the system. As a result, if a quantum system is to be used for storing or manipulating information, one would like to characterize these environmental noise effects. Such a characterization affords one the ability to design robust methods for preserving the information contained in the system. Unfortunately, completely characterizing the noise in a realistic amount of time is impossible for even moderately large systems. In this thesis we discuss methods and diagnostics for partially characterizing quantum noise processes that are especially useful in quantum information and computation. We present a randomized benchmarking protocol that provides a scalable method for determining important properties of the noise affecting the set of gates used on a quantum information processor. We also prove various properties of the quantum gate fidelity, which is a useful state-dependent measure of the distance between two quantum operations, and an important diagnostic of the noise affecting a quantum process. Some non-intuitive generic features of quantum operations acting on large-dimensional quantum systems are also presented.en
dc.publisherUniversity of Waterlooen
dc.subjectQuantum informationen
dc.titleCharacterizing Noise in Quantum Systemsen
dc.typeDoctoral Thesisen
dc.subject.programApplied Mathematicsen Mathematicsen
uws-etd.degreeDoctor of Philosophyen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages