UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Characterizing Noise in Quantum Systems

Loading...
Thumbnail Image

Date

2012-07-26T19:58:15Z

Authors

Magesan, Easwar

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

In practice, quantum systems are not completely isolated from their environment and the resulting system-environment interaction can lead to information leakage from the system. As a result, if a quantum system is to be used for storing or manipulating information, one would like to characterize these environmental noise effects. Such a characterization affords one the ability to design robust methods for preserving the information contained in the system. Unfortunately, completely characterizing the noise in a realistic amount of time is impossible for even moderately large systems. In this thesis we discuss methods and diagnostics for partially characterizing quantum noise processes that are especially useful in quantum information and computation. We present a randomized benchmarking protocol that provides a scalable method for determining important properties of the noise affecting the set of gates used on a quantum information processor. We also prove various properties of the quantum gate fidelity, which is a useful state-dependent measure of the distance between two quantum operations, and an important diagnostic of the noise affecting a quantum process. Some non-intuitive generic features of quantum operations acting on large-dimensional quantum systems are also presented.

Description

Keywords

Quantum, Noise, Quantum information, Randomization

LC Keywords

Citation