Show simple item record

dc.contributor.authorChampaign, John
dc.date.accessioned2012-05-11 20:18:20 (GMT)
dc.date.available2012-05-11 20:18:20 (GMT)
dc.date.issued2012-05-11T20:18:20Z
dc.date.submitted2012-04-30
dc.identifier.urihttp://hdl.handle.net/10012/6721
dc.description.abstractIn this thesis, we present an artificial intelligence approach for tutoring students in environments where there is a large repository of possible learning objects (e.g. texts, videos). In particular, we advocate that students learn on the basis of past experiences of peers. This aligns with McCalla's proposed ecological approach for intelligent tutoring, where a learning object's history-of-use is retained and leveraged to instruct future students. We offer three distinct models that serve to deliver the required intelligent tutoring: (i) a curriculum sequencing algorithm selecting which learning objects to present to students based on benefits to knowledge obtained by similar peers (ii) a framework for peers to provide commentary on the learning objects they've experienced (annotations) together with an algorithm for reasoning about which annotations to present to students that incorporates modeling trust in annotators (i.e. their reputation) and ratings provided by students (votes for and against) for the annotations they have been shown (iii) an opportunity for peers to guide the growth of the corpus by proposing divisions of current objects, together with an algorithm for reasoning about which of these new objects should be offered to students in order to enhance their learning. All three components are validated as beneficial in improving the learning of students. This is first of all achieved through a novel approach of simulated student learning, designed to enable the tracking of the experiences of a very large number of peers with an extensive repository of objects, through the effective modeling of knowledge gains. This is also coupled with a preliminary study with human participants that confirms the value of our framework. In all, we offer a rich and varied role for peers in guiding the learning of students in intelligent tutoring environments, made possible by careful modeling of the students who are being taught and of the potential benefits to learning that would be derived with the selection of appropriate tutorial content.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.titlePeer-Based Intelligent Tutoring Systems: A Corpus-Oriented Approachen
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programComputer Scienceen
uws-etd.degree.departmentSchool of Computer Scienceen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages