Show simple item record

dc.contributor.authorYang, Fei
dc.date.accessioned2012-04-09 16:28:36 (GMT)
dc.date.available2012-04-09 16:28:36 (GMT)
dc.date.issued2012-04-09T16:28:36Z
dc.date.submitted2012
dc.identifier.urihttp://hdl.handle.net/10012/6600
dc.description.abstractThe travel times of public transit systems that operate on mixed use right-of-ways are often dictated by the delays experienced at signalized intersections. When these delays become large and/or highly variable, transit quality degrades and agency operating costs increase. A number of transit priority measures can be applied, including transit signal priority or queue jump lanes. However, it is necessary that a process of prioritizing intersections for priority treatment be conducted so as to ensure the greatest return on investment is achieved. This thesis proposes and demonstrates a methodology to determine the distribution of stopped delays experienced by transit vehicles at signalized intersections using archived AVL (automated vehicle location) and APC (automated passenger counting) data. This methodology is calibrated and validated using queue length and bus unscheduled stopped delay data measured at a field site. Results show the proposed methodology is of sufficient accuracy to be used in practice for prioritizing signalized intersections for priority treatment. On the condition that a sample of the transit vehicle fleet is equipped with an AVL/APC system, the proposed methodology can be automatically implemented using the archived AVL/APC data and therefore avoid the need to conduct dedicated data collection surveys. The proposed methodology can provide estimates of (1) the maximum extent of the queue; and (2) measures of the distribution of stopped delays experienced by transit vehicles (e.g. mean, standard deviation, 90th percentile, etc.) caused by the downstream traffic signal. These measures can be produced separately for different analysis periods (e.g. different times of the day; days of the week; and time of the year) and can be compiled separately for different transit routes. These outputs can then be used to identify and prioritize signalized intersections as candidates for transit signal priority measures. The proposed method is suitable for application to most transit AVL/APC databases and is demonstrated using data from Grand River Transit, the public transit service provider in the Region of Waterloo, Ontario Canada.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjecttransit signal delayen
dc.subjectAVL/APC dataen
dc.titleEstimating Bus Delay at Signalized Intersections from Archived AVL/APC Dataen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programCivil Engineeringen
uws-etd.degree.departmentCivil and Environmental Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages