UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

On Experimental Deterministic Quantum Computation with One Quantum Bit (DQC1)

Loading...
Thumbnail Image

Date

2012-03-27T20:11:14Z

Authors

Passante, Gina

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Quantum information processors have the ability to drastically change our world. By manipulating bits of information ruled by the laws of quantum mechanics, computational devices can perform some computations that are classically intractable. Most quantum algorithms rely on pure qubits as inputs and require entanglement throughout the computation. In this thesis, we explore a model of computation that uses mixed qubits without entanglement known as DQC1 (deterministic quantum computation with one quantum bit), using the physical system of liquid-state Nuclear Magnetic Resonance (NMR). Throughout our research, we experimentally implement an algorithm that completely encapsulates the DQC1 model, and take a close look at the quantum nature of DQC1-states as given by the quantum discord and geometric quantum discord, which are measures of non-classicality that capture correlations weaker than those measured by entanglement. We experimentally detect and quantify these correlations in an NMR DQC1 quantum information processor.

Description

Keywords

quantum, discord, NMR, DQC1

LC Keywords

Citation