UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Synthesis and Characterization of Styrene Butadiene Rubber Nano-Sized Particles via Differential Microemulsion Polymerization

Loading...
Thumbnail Image

Date

2012-02-21T18:10:16Z

Authors

Zou, Rifang

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Styrene-butadiene rubber (SBR) copolymer nanosized latex particles were synthesized via differential microemulsion polymerization (DMP) in a 300ml bench-scale semi-batch reactor, equipped with a thermocouple and a magnetic four-blade stirrer. This approach employed a continuous and slow addition of styrene and butadiene monomers drop-wise into a continuous aqueous phase comprising DI water, an initiator, a surfactant and a chain transfer agent. It was found that this approach offered an efficient heterogeneous phase path to synthesize styrene-butadiene copolymer latices with a high-butadiene-level of the resulting latex particles. The latex nanoparticles were formed as the SBR copolymer monomers undergo a self-assembly process in the continuous phase and were stabilized by their surrounding surfactant particles. The size of the latex particles could be easily adjusted by alternating the monomer addition speed, the reaction temperature, the amount of chain transfer agent applied and the type and the amount of surfactant introduced in the process. Not surprisingly, a small amount of chain transfer agent introduced into the DMP system might facilitate micellar nucleation and reduction of gel content in the polymer dramatically and may also aid increasing the size of the SBR latex particles. Owing to the small size of SBR latices prepared by the DMP method, the glass transition temperature (Tg) of the latices is much lower than the SBR latices generated by conventional technique. Furthermore, the increase of Tg was observed with an increase of the SBR particle size.

Description

Keywords

Styrene butadiene Rubber nanoparticles

LC Keywords

Citation