UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Mean Curvature Flow in Euclidean spaces, Lagrangian Mean Curvature Flow, and Conormal Bundles

Loading...
Thumbnail Image

Date

2011-08-10T15:31:35Z

Authors

Leung, Chun Ho

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

I will present the mean curvature flow in Euclidean spaces and the Lagrangian mean curvature flow. We will first study the mean curvature evolution of submanifolds in Euclidean spaces, with an emphasis on the case of hypersurfaces. Along the way we will demonstrate the basic techniques in the study of geometric flows in general (for example, various maximum principles and the treatment of singularities). After that we will move on to the study of Lagrangian mean curvature flows. We will make the relevant definitions and prove the fundamental result that the Lagrangian condition is preserved along the mean curvature flow in Kähler-Einstein manifolds, which started the extensive, and still ongoing, research on Lagrangian mean curvature flows. We will also define special Lagrangian submanifolds as calibrated submanifolds in Calabi-Yau manifolds. Finally, we will study the mean curvature flow of conormal bundles as submanifolds of C^n. Using some tools developed recently, we will show that if a surface has strictly negative curvatures, then away from the zero section, the Lagrangian mean curvature flow starting from a conormal bundle does not develop Type I singularities.

Description

Keywords

Geometry, Mean Curvature Flow

LC Keywords

Citation