Experimental quantum communication in demanding regimes
Abstract
Quantum communication promises to outperform its classical counterparts and enable protocols previously impossible. Specifically, quantum key distribution (QKD) allows a cryptographic key to be shared between distant parties with provable security. Much work has been performed on theoretical and experi- mental aspects of QKD, and the push is on to make it commercially viable and integrable with existing technologies. To this end I have performed simulations and experiments on QKD and other quantum protocols in regimes previously unexplored.
The first experiment involves QKD via distributed entanglement through the standard telecommunications optical fibre network. I show that entanglement is preserved, even when the photons used are a shorter wavelength than the design of the optical fibre calls for. This surprising result is then used to demonstrate QKD over installed optical fibre, even with co-propagating classical traffic. Because the quantum and classical signals are sufficiently separated in wavelength, little cross-talk is observed, leading to high compatibility between this type of QKD and existing telecommunications infrastructure.
Secondly, I demonstrate the key components of fully-modulated decoy-state QKD over the highest-loss channel to date, using a novel photon source based on weak coherent (laser) pulses. This system has application in a satellite uplink of QKD, which would enable worldwide secure communication. The uplink allows the complex quantum source to be kept on the ground while only simple receivers are in space, but suffers from high link loss due to atmospheric turbulence, necessitating the use of specific photon detectors and highly tailored photon pulses. My results could be applied in a near term satellite mission.
Collections
Cite this version of the work
Evan Meyer-Scott
(2011).
Experimental quantum communication in demanding regimes. UWSpace.
http://hdl.handle.net/10012/6052
Other formats
Related items
Showing items related by title, author, creator and subject.
-
Experimental prospects for detecting the quantum nature of spacetime
Corona Ugalde, Paulina (University of Waterloo, 2017-09-21)This thesis is concerned with advancing the confrontation between relativistic quantum information (RQI) and experiment. We investigate the lessons that some present-day experiments can teach us about the relationship ... -
Transmitting Quantum Information Reliably across Various Quantum Channels
Ouyang, Yingkai (University of Waterloo, 2013-05-01)Transmitting quantum information across quantum channels is an important task. However quantum information is delicate, and is easily corrupted. We address the task of protecting quantum information from an information ... -
Quantum Compression and Quantum Learning via Information Theory
Bab Hadiashar, Shima (University of Waterloo, 2020-12-21)This thesis consists of two parts: quantum compression and quantum learning theory. A common theme between these problems is that we study them through the lens of information theory. We first study the task of visible ...