The Vulcan game of Kal-toh: Finding or making triconnected planar subgraphs

Loading...
Thumbnail Image

Date

2011-04-28T20:28:35Z

Authors

Anderson, Terry David

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

In the game of Kal-toh depicted in the television series Star Trek: Voyager, players attempt to create polyhedra by adding to a jumbled collection of metal rods. Inspired by this fictional game, we formulate graph-theoretical questions about polyhedral (triconnected and planar) subgraphs in an on-line environment. The problem of determining the existence of a polyhedral subgraph within a graph G is shown to be NP-hard, and we also give some non-trivial upper bounds for the problem of determining the minimum number of edge additions necessary to guarantee the existence of a polyhedral subgraph in G. A two-player formulation of Kal-toh is also explored, in which the first player to form a target subgraph is declared the winner. We show a polynomial-time solution for simple cases of this game but conjecture that the general problem is NP-hard.

Description

Keywords

triconnectivity, planarity, polyhedra, subgraphs

LC Keywords

Citation