UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Electrostatic Interactions of Peptides with Lipid Membranes: Competitive Binding between Cationic Peptides and Divalent Counterions

Loading...
Thumbnail Image

Date

2010-09-30T23:44:07Z

Authors

Rahnamaye Farzami, Roham

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

In this thesis, we investigate a variety of problems involving the interaction of cationic peptides with lipid membranes. To this end we adopt Poisson-Boltzmann (PB) theory and coarse-grained models of these molecules. We first examine the electrostatic interaction of a positively-charged peptide with a negatively charged membrane immersed in a salty solution. In particular, we study how this interaction is influenced by peptides geometry, valence of salt ions, and lipid demixibility. Also we develop a more analytically tractable approach to peptide-membrane association, and then compare it with our PB approach. Finally, we study the interactions of cationic antimicrobial peptides with the outer leaflet of the outer membrane of Gram-negative bacteria. In particular, we incorporate charge discreteness and thus transverse charge correlations on the membrane surface. The main effect of charge discreteness is to enhance the affinity of counterions, especially multivalent ones, for the membrane. This effort enables us to study the competitive binding between cationic peptides and divalent counterions. Our results offer a physical explanation for the observed preferred binding of cationic antimicrobial peptides onto the outer leaflet of Gram-negative bacteria over divalent counterions.

Description

Keywords

LC Keywords

Citation