Show simple item record

dc.contributor.authorPrescod-Weinstein, Chanda Rosalyn Sojourner 18:25:41 (GMT) 18:25:41 (GMT)
dc.description.abstractThe discovery of cosmic acceleration has prompted the need for a new understanding of cosmology. The presence of this acceleration is often described as the dark energy problem or the Lambda problem.The simplest explanation is that the acceleration is due to addition of a cosmological constant to Einstein's equation, but this resolution is unsatisfactory as it leaves several unanswered questions. Although General Relativity has been tested in the strong-field limit, the apparent dark energy may be urging us to consider experimental cosmology as such a test for large scales. In this vein, I have pursued a study of modifications to Einstein's gravity as well as possible related quantum gravity phenomenology. Not only must the details of modified gravities be worked out, but their impact on other astrophysics must be checked. For example, structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement the Press & Schechter formalism. I explore the potential for universality in the Press & Schechter formalism and what dark matter haloes may be able to tell us about cosmology.en
dc.publisherUniversity of Waterlooen
dc.subjectquantum gravityen
dc.titleCosmic Acceleration As Quantum Gravity Phenomenologyen
dc.typeDoctoral Thesisen
dc.subject.programPhysicsen and Astronomyen
uws-etd.degreeDoctor of Philosophyen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages