UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

The Ordinal Serial Encoding Model: Serial Memory in Spiking Neurons

Loading...
Thumbnail Image

Date

2010-08-26T18:51:25Z

Authors

Choo, Feng-Xuan

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

In a world dominated by temporal order, memory capable of processing, encoding and subsequently recalling ordered information is very important. Over the decades this memory, known as serial memory, has been extensively studied, and its effects are well known. Many models have also been developed, and while these models are able to reproduce the behavioural effects observed in human recall studies, they are not always implementable in a biologically plausible manner. This thesis presents the Ordinal Serial Encoding model, a model inspired by biology and designed with a broader view of general cognitive architectures in mind. This model has the advantage of simplicity, and we show how neuro-plausibility can be achieved by employing the principles of the Neural Engineering Framework in the model’s design. Additionally, we demonstrate that not only is the model able to closely mirror human performance in various recall tasks, but the behaviour of the model is itself a consequence of the underlying neural architecture.

Description

Keywords

serial memory, neural engineering framework, spiking neuron model, HRR, working memory, serial-order recall

LC Keywords

Citation