UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Polypropylene Modified by Polydimethylsiloxane in Catalytic Cross Metathesis Reactions

Loading...
Thumbnail Image

Date

2010-07-09T14:16:28Z

Authors

Wu, Yan Rong

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

In this study, we were particularly interested in looking at the possibility that cross metathesis of olefins in melt phase could be used to produce polydimethylsiloxane (PDMS) modified polypropylene (PP). The intention of this project was also to study and quantify relationships among the main experimental factors in the reaction: temperature, catalyst concentration and molar ratio of PP to PDMS, through a 2-level factorial statistical design. In order to examine if PP-PDMS copolymers were synthesized in the melt phase, measurement of the chemical, physical and viscoelastic properties of the synthesized copolymers was necessary. Techniques including proton (¹H)-nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), rheometry and scanning electron microscopy (SEM), were all used to characterize the synthesized copolymers. ¹H NMR measurements confirmed the presence of PDMS in the copolymers. They also provided a quantitative measurement of PP to PDMS molar ratio in copolymers by determining the integration of PP PDMS repeating unit signals in NMR spectra. Compared to virgin PP, a lower melting enthalpy of the PP phase in the copolymer was observed from DSC results. This implied that the PDMS component influenced the thermal behavior of the PP crystalline phase in the copolymers. Moreover, TGA measurements indicated that a higher thermal stability was obtained for PP-PDMS copolymers than that for virgin PP wax and this was expected since PDMS is known for its excellent stability at high temperature. Rheological analysis showed that the presence of PDMS in the copolymers gave lower complex viscosities and loss moduli, but higher storage moduli than those for virgin PP. Furthermore, the morphology of copolymers was examined by SEM and elemental analysis at the surface using an energy dispersive X-ray (EDX) analyzer on the SEM. It was found that micrographs of copolymers showed round domains on the surface, which were not observed in virgin PP wax and those round segments were confirmed to contain silicon. Torque values used in a batch mixer for polymerizations and the remaining weight % of copolymers at 350°C were used to conduct statistical analysis, through which models used to describe the relationships between experimental factors and these physical responses were determined.

Description

Keywords

polypropylene, polydimethylsiloxane, batch mixer, melt phase, cross metathesis, NMR, TGA, DSC, Rheometer, Grubbs catalyst, Schrock, modified polypropylene

LC Keywords

Citation