Show simple item record

dc.contributor.authorGhohroodi Ghamsari, Behnood
dc.date.accessioned2010-05-27 17:05:13 (GMT)
dc.date.available2010-05-27 17:05:13 (GMT)
dc.date.issued2010-05-27T17:05:13Z
dc.date.submitted2010-05-25
dc.identifier.urihttp://hdl.handle.net/10012/5252
dc.description.abstractThis thesis investigates a novel optoelectronic platform based on the integration of superconductive structures, such as thin films and micro-constrictions, with optical waveguides for ultra-fast and ultra-sensitive devices with applications including high-speed optical communications, quantum optical information processing, and terahertz (THz) devices and systems. The kinetic-inductive photoresponse of superconducting thin films will be studied as the basic optoelectronic process underlying the operation of these novel devices. Analytical formulation for the non-bolometric response is presented, and experimental photodetection in YBCO meander-line structures will be demonstrated. A set of superconducting coplanar waveguides (CPW) are designed and characterized, which support the operation of the devices at microwave frequencies. Microwave-photonic devices comprising a microwave transmission line and a light-sensitive element, such as a meander-line structure, are designed and measured for implementation of optically tunable microwave components. In order to support low-loss and low-dispersion propagation of millimeter-wave and THz signals in ultra-fast and wideband kinetic-inductive devices, surface-wave transmission lines are proposed, incorporating long-wavelength Surface Plasmon Polariton (SPP) modes in planar metal-dielectric waveguides. The theory of superconducting optical waveguides, including analytical formulation and numerical methods, is developed in detail. The implementation of superconducting optical waveguides is discussed thoroughly, employing conventional dielectric-waveguide techniques as well as optical SPP modes. Superconductive traveling-wave photodetectors (STWPDs) are introduced as a viable means for ultra-fast and ultra-sensitive photodetection and photomixing. A modified transmission line formalism is developed to model STWPDs, where light is guided through an optical waveguide and photodetection is distributed along a transmission line. As an appendix, a systematic approach is developed for the analysis of carrier transport through superconducting heterostructures and micro-constrictions within the Bogoliubov-de Gennes (BdG) framework. The method is applied to study the role of Andreev reflection and Josephson-like phenomena in the current-voltage characteristics of inhomogeneous superconducting structures. I-V characteristics are experimentally demonstrated in YBCO micro-constrictions with potential applications in millimeter-wave and THz devices.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectSuperconductingen
dc.subjectguided-wave quantum optoelectronicen
dc.titleGuided-Wave Superconducting Quantum Optoelectronic Devicesen
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages