A Robust Optimization Approach to the Self-scheduling Problem Using Semidefinite Programming
Loading...
Authors
Landry, Jason Conrad
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
In deregulated electricity markets, generating companies submit energy bids which are derived from a self-schedule. In this thesis, we propose an improved semidefinite programming-based model for the self-scheduling problem. The model provides the profit-maximizing generation quantities of a single generator over a multi-period horizon and accounts for uncertainty in prices using robust optimization. Within this robust framework, the price information is represented analytically as an ellipsoid. The risk-adversity of the decision maker is taken into account by a scaling parameter. Hence, the focus of the model is directed toward the trade-off between profit and risk. The bounds obtained by the proposed approach are shown to be significantly better than those obtained by a mean-variance approach from the literature. We then apply the proposed model within a branch-and-bound algorithm to improve the quality of the solutions. The resulting solutions are also compared with the mean-variance approach, which is formulated as a mixed-integer quadratic programming problem. The results indicate that the proposed approach produces solutions which are closer to integrality and have lower relative error than the mean-variance approach.