UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Dynamical Systems Methods Applied to the Michaelis-Menten and Lindemann Mechanisms

Loading...
Thumbnail Image

Date

2009-08-06T18:58:07Z

Authors

Calder, Matthew Stephen

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

In the first part of this thesis, we will explore an iterative procedure to determine the detailed asymptotic behaviour of solutions of a certain class of nonlinear vector differential equations which approach a nonlinear sink as time tends to infinity. This procedure is indifferent to resonance in the eigenvalues. Some attention will be given to finding approximations to solutions which are themselves flows. Moreover, we will address the writing of one component in terms of another in the case of a planar system. In the second part of this thesis, we will explore the Michaelis-Menten mechanism of a single enzyme-substrate reaction. The focus is an analysis of the planar reduction in phase space or, equivalently, solutions of the scalar reduction. In particular, we will prove the existence and uniqueness of a slow manifold between the horizontal and vertical isoclines. Also, we will determine the concavity of all solutions in the first quadrant. Moreover, we will establish the asymptotic behaviour of all solutions near the origin, which generally is not given by a Taylor series. Finally, we will determine the asymptotic behaviour of the slow manifold at infinity. Additionally, we will study the planar reduction. In particular, we will find non-trivial bounds on the length of the pre-steady-state period, determine the asymptotic behaviour of solutions as time tends to infinity, and determine bounds on the solutions valid for all time. In the third part of this thesis, we explore the (nonlinear) Lindemann mechanism of unimolecular decay. The analysis will be similar to that for the Michaelis-Menten mechanism with an emphasis on the differences. In the fourth and final part of this thesis, we will present some open problems.

Description

Keywords

Michaelis-Menten, Lindemann, Asymptotics, Slow manifold

LC Keywords

Citation