Show simple item record

dc.contributor.authorHuang, Xuan Jay 20:19:51 (GMT) 20:19:51 (GMT)
dc.description.abstractSpecialized voltage-gated calcium channels in the Cav2 channel class (such as Cav2.2, N-type) mediate neurotransmitter release from presynaptic nerve terminals. Cav2.2 channels are exquisitely sensitive to inhibition by G protein-coupled receptors. The ubiquitous form of G protein modulation is a fast, membrane delimited, voltage-dependent form of regulation, which is relieved by strong depolarizations. LCav2, an invertebrate homolog from the pulmonate snail Lymnaea stagnalis, serves a similar function as a mediator of transmitter release in the nervous system. To examine the G protein modulation capacity in invertebrates, LCav2 was cloned to a bicistronic expression vector pIRES2-EGFP and expressed in HEK293T cells. Although LCav2 was almost indistinguishable from mammalian Cav2.2 in biophysical characteristics observed in vitro, snail LCav2 channel lacked the property of voltage dependent G protein modulation. The structural elements essential for the voltage sensitivity to G protein modulation were explored by swapping the N-terminus and I-II linker regions of rCav2.2 channels into LCav2 calcium channels. Functional comparisons were also made using both mammalian and invertebrate homologs of G protein beta subunits, Gβ1. Neither the N-terminus or I-II linker region of Cav2.2 alone, nor the invertebrate G protein beta subunit was sufficient for voltage-dependent G protein modulation. Further analyses using chimeric channels and G protein subunits will be required to find the minimal structural determinants for voltage-dependent G protein modulation.en
dc.publisherUniversity of Waterlooen
dc.titleAnalysis of the structural determinants for voltage-dependent G protein modulation of synaptic Cav2 channelsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages