The University of Waterloo Libraries will be performing maintenance on UWSpace tomorrow, November 5th, 2025, from 10 am – 6 pm EST.
UWSpace will be offline for all UW community members during this time. Please avoid submitting items to UWSpace until November 7th, 2025.

Detecting Hand-Ball Events in Video

Loading...
Thumbnail Image

Authors

Miller, Nicholas

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

We analyze videos in which a hand interacts with a basketball. In this work, we present a computational system which detects and classifies hand-ball events, given the trajectories of a hand and ball. Our approach is to determine non-gravitational parts of the ball's motion using only the motion of the hand as a reliable cue for hand-ball events. This thesis makes three contributions. First, we show that hand motion can be segmented using piecewise fifth-order polynomials inspired by work in motor control. We make the remarkable experimental observation that hand-ball events have a phenomenal correspondence to the segmentation breakpoints. Second, by fitting a context-dependent gravitational model to the ball over an adaptive window, we can isolate places where the hand is causing non-gravitational motion of the ball. Finally, given a precise segmentation, we use the measured velocity steps (force impulses) on the ball to detect and classify various event types.

Description

LC Subject Headings

Citation