UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Automated Recognition of 3D CAD Model Objects in Dense Laser Range Point Clouds

Loading...
Thumbnail Image

Date

2008-08-11T18:39:42Z

Authors

Bosche, Frederic

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

There is shift in the Architectural / Engineering / Construction and Facility Management (AEC&FM) industry toward performance-driven projects. Assuring good performance requires efficient and reliable performance control processes. However, the current state of the AEC&FM industry is that control processes are inefficient because they generally rely on manually intensive, inefficient, and often inaccurate data collection techniques. Critical performance control processes include progress tracking and dimensional quality control. These particularly rely on the accurate and efficient collection of the as-built three-dimensional (3D) status of project objects. However, currently available techniques for as-built 3D data collection are extremely inefficient, and provide partial and often inaccurate information. These limitations have a negative impact on the quality of decisions made by project managers and consequently on project success. This thesis presents an innovative approach for Automated 3D Data Collection (A3dDC). This approach takes advantage of Laser Detection and Ranging (LADAR), 3D Computer-Aided-Design (CAD) modeling and registration technologies. The performance of this approach is investigated with a first set of experimental results obtained with real-life data. A second set of experiments then analyzes the feasibility of implementing, based on the developed approach, automated project performance control (APPC) applications such as automated project progress tracking and automated dimensional quality control. Finally, other applications are identified including planning for scanning and strategic scanning.

Description

Keywords

Object recognition, Laser scanning, 3D CAD model, Project 4D Information Model (P4dIM), Progress tracking, Dimensional QA/QC, Structural health monitoring, Planning for Scanning, Strategic scanning

LC Keywords

Citation