UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Achieving Soft Real-time Guarantees for Interactive Applications in Wireless Mesh Networks

Loading...
Thumbnail Image

Date

2008-01-25T20:24:38Z

Authors

Reid, Cecil

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The use of 802.11-based multi-hop wireless mesh networks for Internet access is extensive and growing. The primary advantages of this approach are ease of deployment and lower cost. However, these networks are designed for web and e-mail applications. Highly interactive applications, such as multiplayer online games and VoIP, with their requirements for low delay, present significant challenges to these networks. In particular, the interaction between real-time traffic and TCP traffic tends to result in either a failure of the real-time traffic getting its needed QoS or the TCP traffic unnecessarily experiencing very poor throughput. To solve this problem we place real-time and TCP traffic into separate queues. We then rate-limit TCP traffic based on the average queue size of the local or remote real-time queues. Thus, TCP traffic is permitted to use excess bandwidth as long as it does not interfere with real-time traffic guarantees. We therefore call our scheme Real-time Queue-based Rate and Admission Control, RtQ-RAC. Extensive simulations using the network simulator, ns-2, demonstrate that our approach is effective in providing soft real-time support, while allowing efficient use of the remaining bandwidth for TCP traffic.

Description

Keywords

multimedia, interactive applications, wireless mesh network, wireless multihop, 802.11, QoS, rate control, real-time

LC Keywords

Citation