Show simple item record

dc.contributor.authorLiu, Yang
dc.date.accessioned2008-01-18 21:08:16 (GMT)
dc.date.available2008-01-18 21:08:16 (GMT)
dc.date.issued2008-01-18T21:08:16Z
dc.date.submitted2008
dc.identifier.urihttp://hdl.handle.net/10012/3496
dc.description.abstractAn all-IP pervasive networking system provides a comprehensive IP solution where voice, data and streamed multimedia can be delivered to users at anytime and anywhere. Network selection is a key issue in this converged heterogeneous networking environment. A traditional way to select a target network is only based on the received signal strength (RSS); however, it is not comprehensive enough to meet the various demands of different multimedia applications and different users. Though some existing schemes have considered multiple criteria (e.g. QoS, security, connection cost, etc.) for access network selection, there are still several problems unsettled or not being solved perfectly. In this thesis, we propose a novel model to handle this network selection issue. Firstly, we take advantage of IEEE 802.21 to obtain the information of neighboring networks and then classify the information into two categories: 1) compensatory information and 2) non-compensatory information; secondly, we use the non-compensatory information to sort out the capable networks as candidates. If a neighboring network satisfies all the requirements of non-compensatory criteria, the checking of the compensatory information will then be triggered; thirdly, taking the values of compensatory information as input, we propose a hybrid ANP and RTOPSIS model to rank the candidate networks. ANP elicit weights to compensatory criteria and eliminates the interdependence impact on them, and RTOPSIS resolves the rank reversal problem which happens in some multiple criteria decision making (MCDM) algorithms such as AHP, TOPSIS, and ELECTRE. The evaluation study verifies the usability and validity of our proposed network selection method. Furthermore, a comparison study with a TOPSIS based algorithm shows the advantage and superiority of the proposed RTOPSIS based model.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.titleAccess Network Selection in a 4G Networking Environmenten
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages