Show simple item record

dc.contributor.authorMuthaiah, Skanda Nagaraja
dc.date.accessioned2007-10-01 18:32:06 (GMT)
dc.date.available2007-10-01 18:32:06 (GMT)
dc.date.issued2007-10-01T18:32:06Z
dc.date.submitted2007-09-28
dc.identifier.urihttp://hdl.handle.net/10012/3391
dc.description.abstractWireless Mesh Networks are increasingly becoming popular as low cost alternatives to wired networks for providing broadband access to users (the last mile connectivity). A key challenge in deploying wireless mesh networks is designing networks with sufficient capacity to meet user demands. Accordingly, researchers have explored various schemes in an effort to build high throughput mesh networks. One of the key technologies that is often employed by researchers to build high throughput wireless mesh networks (WMN) is equipping nodes with smart antennas. By exploiting the advantages of reduced interference and longer transmission paths, smart antennas have been shown to significantly increase network throughput in WMN. However, there is a need to identify and establish an upper-bound on the maximum throughput that is achievable by using smart antennas equipped WMN. Such a bound on throughput is important for several reasons, the most important of which is identifying the services that can be supported by these technologies. This thesis begins with a focus on establishing this bound. Clearly, it is evident that smart-antennas cannot increase network throughput beyond a certain limit for various reasons including the limitations imposed by existing smart an- tenna technology itself. However with the spiralling demand for broadband access, schemes must be explored that can increase network throughput beyond the limit imposed by smart antennas. An interesting and robust method to achieve this increased throughput is by en- abling multiple gateways within the network. Since, the position of these gateways within the network bears a significant influence on network performance, techniques to “opti- mally” place these gateways within the network must be evolved. The study of multiple gateway placement in multi-hop mesh networks forms the next focus of this study. This thesis ends with a discussion on further work that is necessary in this domain.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectwireless mesh network smart antenna phased array multiple gateway optimization framework algorithmsen
dc.titleDesign of High Throughput Wireless Mesh Networksen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages