UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

An apparatus for studying interactions between Rydberg atoms and metal surfaces

Loading...
Thumbnail Image

Date

2007-09-27T14:37:51Z

Authors

Carter, Jeffrey David

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

A system suitable for studying interactions between ⁸⁷Rb Rydberg atoms and metal surfaces has been constructed. This thesis describes the design and construction of the apparatus, and some test results. Atoms in a vapor cell magneto-optical trap are transferred to a macroscopic Ioffe-Pritchard trap, where they will be RF evaporatively cooled and loaded into a magnetic microtrap (atom chip). Confinement of cold clouds at controllable distances (5–200 μm)} from a metal surface is possible. The effects of atom-surface interactions can be studied with Rydberg atom spectroscopy. Some functionality of the apparatus has been demonstrated. Approximately 1.5×10⁷ atoms were loaded into a mirror MOT, and about 6×10⁶ atoms were optically pumped to the |F=2, m_F=2> hyperfine ground state and confined in a macroscopic Ioffe-Pritchard trap. The temperature of the cloud in the trap was 42 ± 5 μK, and the 1/e lifetime is 1–1.5 s. Forced RF evaporation has been used to measure the magnetic field at the trap minimum, but RF evaporative cooling has not yet been demonstrated.

Description

Keywords

ultracold atoms, Rydberg atoms, atom chip, laser cooling, magneto-optical trap, atomic molecular optical physics

LC Keywords

Citation