UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

High Performance WLAN Using Smart Antenna

Loading...
Thumbnail Image

Date

2007-09-25T20:20:03Z

Authors

Banaser, Hesham Hassan

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The need for higher data rates in WLANs boosts drastically because tremendous consumer interest in emerging multimedia applications, such as HDTV, has been increased. Currently, the IEEE 802.11a/b/g WLANs provide a limited data rate for the current user application requirements. In order to overcome substantial limitations of the existing WLANs, the next generation of WLANs, IEEE 802.11n, is in the course of development and expected to support higher throughput, larger coverage area and better QoS. The high performance IEEE 802.11n WLAN can improve data rate significantly by using smart antenna systems in the physical layer to take advantage of multi-path fading of wireless channels. In this thesis, an analytical model is developed to study the MAC performance and the underlying smart antenna technologies used in multi-path fading channels. Multiple antennas employed in the AP arise two popular approaches to provide a significant performance improvement, diversity and multiplexing. Considering the diversity gain of multiple antennas at the AP in which the AP with multiple antennas serves one user at a time, the capacity and throughput can be obtained. In addition, the AP is possible to serve multiple users in the downlink, by exploiting the multiplexing gain of the wireless channel. We investigate the maximum network throughput when the traffic intensity of the AP approaches to one. Unlike most of previous research which focus on either the physical or the MAC layer performance, our analytical model jointly considers the MAC protocol and the smart antenna technology.

Description

Keywords

Smart antenna, IEEE 802.11n WLAN, multiplexing gain, diversity gain

LC Keywords

Citation