UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Study of Transition Metal Phosphides as Anode Materials for Lithium-ion Batteries: Phase Transitions and the Role of the Anionic Network

Loading...
Thumbnail Image

Date

2006

Authors

Gosselink, Denise

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

This study highlights the importance of the anion in the electrochemical uptake of lithium by metal phosphides. It is shown through a variety of <em>in-situ</em> and <em>ex-situ</em> analytical techniques that the redox active centers in three different systems (MnP<i><sub>4</sub></i>, FeP<i><sub>2</sub></i>, and CoP<i><sub>3</sub></i>) are not necessarily cationic but can rest almost entirely upon the anionic network, thanks to the high degree of covalency of the metal-phosphorus bond and strong P-character of the uppermost filled electronic bands in the phosphides. The electrochemical mechanism responsible for reversible Li uptake depends on the transition metal, whether a lithiated ternary phase exists in the phase diagram with the same M:P stoichiometry as the binary phase, and on the structure of the starting phase. When both binary and lithiated ternary phases of the transition metal exist, as in the case of MnP<i><sub>4</sub></i> and Li<i><sub>7</sub></i>MnP<i><sub>4</sub></i>, a semi-topotactic phase transformation between binary and ternary phases occurs upon lithium uptake and removal. When only the binary phase exists two different behaviours are observed. In the FeP<i><sub>2</sub></i> system, lithium uptake leads to the formation of an amorphous material in which short-range order persists; removal of lithium reforms some the long-range order bonds. In the case of CoP<i><sub>3</sub></i>, lithium uptake results in phase decomposition to metallic cobalt plus lithium triphosphide, which becomes the active material for the subsequent cycles.

Description

Keywords

Chemistry, Lithium-ion batteries, Transition metal phosphides, Anode, Mechanism

LC Keywords

Citation

Collections