UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Learning Instruction Scheduling Heuristics from Optimal Data

Loading...
Thumbnail Image

Date

2006

Authors

Russell, Tyrel Clinton

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The development of modern pipelined and multiple functional unit processors has increased the available instruction level parallelism. In order to fully utilize these resources, compiler writers spend large amounts of time developing complex scheduling heuristics for each new architecture. In order to reduce the time spent on this process, automated machine learning techniques have been proposed to generate scheduling heuristics. We present two case studies using these techniques to generate instruction scheduling heuristics for basic blocks and super blocks. A basic block is a block of code with a single flow of control and a super block is a collection of basic blocks with a single entry point but multiple exit points. We improve previous techniques for automated generation of basic block scheduling heuristics by increasing the quality of the training data and increasing the number of features considered, including several novel features that have useful effects on scheduling instructions. Our case study into super block scheduling heuristics is a novel contribution as previous approaches were only applied to basic blocks. We show through experimentation that we can produce efficient heuristics that perform better than current heuristic methods for basic block and super block scheduling. We show that we can reduce the number of non-optimally scheduled blocks by up to 55% for basic blocks and 38% for super blocks. We also show that we can produce better schedules 7. 8 times more often than the next best heuristic for basic blocks and 4. 4 times more often for super blocks.

Description

Keywords

Computer Science, Instruction Scheduling, Heuristics, Machine Learning, Decision Trees

LC Keywords

Citation