UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

General Geometry Computed Tomography Reconstruction

Loading...
Thumbnail Image

Date

2006

Authors

Ramotar, Alexei

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The discovery of Carbon Nanotubes and their ability to produce X-rays can usher in a new era in Computed Tomography (CT) technology. These devices will be lightweight, flexible and portable. The proposed device, currently under development, is envisioned as a flexible band of tiny X-ray emitters and detectors. The device is wrapped around an appendage and a CT image is obtained. However, current CT reconstruction algorithms can only be used if the geometry of the CT device is regular (usually circular). We present an efficient and accurate reconstruction technique that is unconstrained by the geometry of the CT device. Indeed the geometry can be both regular and highly irregular. To evaluate the feasibility of reconstructing a CT image from such a device, a simulated test bed was built to generate simulated CT ray sums of an image. This data was then used in our reconstruction method. We take this output data and grid it according to what we would expect from a parallel-beam CT scanner. The Filtered Back Projection can then be used to perform reconstruction. We have also included data inaccuracies as is expected in "real world" situations. Observations of reconstructions, as well as quantitative results, suggest that this simple method is efficient and accurate.

Description

Keywords

Computer Science, Reconstruction, Computed Tomogrpahy, FFT

LC Keywords

Citation