Show simple item record

dc.contributor.authorLin, Fengen
dc.date.accessioned2007-05-08 13:45:11 (GMT)
dc.date.available2007-05-08 13:45:11 (GMT)
dc.date.issued2006en
dc.date.submitted2006en
dc.identifier.urihttp://hdl.handle.net/10012/2849
dc.description.abstractPolymer nanocomposites are already a part of many important of worldwide businesses: automotive (molded part in cars), electronics and electrical engineering, household products, packaging industry, aircraft interiors, appliance components, security equipments. Among many nanocomposite precursors, TiO<sub>2</sub> nanopowder is increasingly being investigated due to its special properties. <br /><br /> The objective of this work is to synthesize and characterize polymer-TiO<sub>2</sub> hybrid nanocomposites. When dispersed at the nanoscale level TiO<sub>2</sub> could act as visually transparent UV filters and high-thermomechanical-performance materials. The synthesis strategy involved two steps. Firstly, aggregated TiO<sub>2</sub>, as received, was modified by 3-trimethoxysilyl propylmethacrylate aimed at altering its surface characteristics. The effect of modifier concentration on changing the physicochemical properties of TiO<sub>2</sub> surface was evaluated. Size distribution of unmodified and modified TiO<sub>2</sub> nanopowders was measured using a particle size analyzer. The qualitative and quantitative grafting of vinyl groups on TiO<sub>2</sub> surface was investigated with Fourier transform-infrared (FTIR) and proton nuclear magnetic resonance (<sup>1</sup>H-NMR) spectroscopy. Secondly, styrene monomer was then added to carry out copolymerization with vinyl groups on the modified TiO<sub>2</sub> by free radical initiator 2,2-azobis isobutyronitrile (AIBN) in bulk medium. FTIR spectra confirmed the formation of nanocomposites with polystyrene chains chemically linked to the surface of TiO<sub>2</sub> nanopowders. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicated that the resulting nanocomposites displayed higher thermal stability and maintained similar glass transition temperatures (T<sub>g</sub>) compared with pure PS. Ultraviolet ?visible spectroscopy (UV-Vis) investigated that these nanocomposites have improved optical properties potentially acting as visually transparent UV filters. Such incremented properties were attributed to the nancoscale dispersion (20-50nm size) of TiO<sub>2</sub> into polystyrene matrix, which morphology was observed by scanning electron microscopy (SEM).en
dc.formatapplication/pdfen
dc.format.extent4302710 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.rightsCopyright: 2006, Lin, Feng . All rights reserved.en
dc.subjectChemical Engineeringen
dc.subjectNanocompositesen
dc.subjectpolymeren
dc.subjectTiO2en
dc.titlePreparation and Characterization of Polymer TiO<sub>2</sub> Nanocomposites via <em>In-situ</em> Polymerizationen
dc.typeMaster Thesisen
dc.pendingfalseen
uws-etd.degree.departmentChemical Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages