UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Hydrodynamic Modelling of the Electronic Response of Carbon Nanotubes

Loading...
Thumbnail Image

Date

2007-02-08T15:11:29Z

Authors

Mowbray, Duncan John

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The discovery of carbon nanotubes by Iijima in 1991 has created a torrent of new research activities. Research on carbon nanotubes ranges from studying their fundamental properties, such as their electron band structure and plasma frequencies, to developing new applications, such as self-assembled nano-circuits and field emission displays. Robust models are now needed to enable a better understanding of the electronic response of carbon nanotubes. We use time-dependent density functional theory to derive a two-fluid two-dimensional (2D) hydrodynamic model describing the collective response of a multiwalled carbon nanotube with dielectric media embedded inside or surrounding the nanotube. We study plasmon hybridization of the nanotube system in the UV range, the stopping force for ion channelling, the dynamical image potential for fast ions, channelled diclusters and point dipoles, and the energy loss for ions with oblique trajectories. Comparisons are made of results obtained from the 2D hydrodynamic model with those obtained from an extension of the 3D Kitagawa model to cylindrical geometries.

Description

Keywords

carbon nanotubes, hydrodynamic model, plasmon excitations, stopping force, image potential, self energy, ion channelling

LC Keywords

Citation