Show simple item record

dc.contributor.authorChang, Haocheng
dc.date.accessioned2024-06-19 20:17:34 (GMT)
dc.date.available2024-06-19 20:17:34 (GMT)
dc.date.issued2024-06-19
dc.date.submitted2024-06-17
dc.identifier.urihttp://hdl.handle.net/10012/20669
dc.description.abstractReach-avoid tasks are among the most common challenges in autonomous aerial vehicle (UAV) applications. Despite the significant progress made in the research of aerial vehicle control during recent decades, the task of efficiently generating feasible trajectories amidst complex surroundings while ensuring formal safety guarantees during trajectory tracking remains an ongoing challenge. In response to this challenge, we propose a comprehensive control framework specifically for quadrotor UAVs reach-avoid tasks with robust formal safety guarantees. Our approach integrates geometric control theory with advanced trajectory generation techniques, enabling the consideration of tracking errors during the trajectory planning phase. Our framework leverages the well-established geometric tracking controller, analyzing its stability to demonstrate the local exponential stability of tracking error dynamics with any positive control gains. Additionally, we derive precise and tight uniform bounds for tracking errors, ensuring guaranteed safety of the system's behavior under certain conditions. In the trajectory generation phase, our approach incorporates these bounds into the planning process, employing sophisticated sampling-based planning algorithms and safe hyper-rectangular set computations to define robust safe tubes within the environment. These safe tubes serve as corridors within which trajectories can be constructed, with piecewise continuous Bezier curves employed to ensure smooth and continuous motion. Furthermore, to enhance the performance and adaptability of our framework, we formulate an optimization problem aimed at determining optimal control gains, thereby enabling the quadrotor UAV to navigate with optimal safety guarantees. To demonstrate the validation of the proposed framework, we conduct comprehensive numerical simulations as well as real experiments, demonstrating its ability to successfully plan and execute reach-avoid maneuvers while maintaining a high degree of safety and precision. Through these simulations, we illustrate the practical effectiveness and versatility of our framework in addressing real-world challenges encountered in UAV navigation and trajectory planning.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectlyapunov stability analysisen
dc.subjectgeometric controlen
dc.subjectquadrotoren
dc.subjectreach-avoid tasken
dc.titleStability Analysis and Formally Guaranteed Tracking Control of Quadrotorsen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentApplied Mathematicsen
uws-etd.degree.disciplineApplied Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws-etd.embargo.terms0en
uws.contributor.advisorLiu, Jun
uws.contributor.affiliation1Faculty of Mathematicsen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages