The University of Waterloo Libraries will be performing maintenance on UWSpace tomorrow, November 5th, 2025, from 10 am – 6 pm EST.
UWSpace will be offline for all UW community members during this time. Please avoid submitting items to UWSpace until November 7th, 2025.

MS/MS Spectrum Prediction for MHC-Associated Peptides with a Fine-Tuned Model

Loading...
Thumbnail Image

Authors

Li, Zhenbo

Advisor

Ma, Bin
Lu, Yang

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

To improve the quality of spectral library search, several MS/MS spectrum predictors have been developed in the last decades. After success in various fields, deep learning techniques are adopted by MS/MS spectrum predictors to increase the accuracy of predicted spectra. However, the quality and quantity of the training set are both required to train a deep learning model. Due to the less representation of MHC-associated peptides in most spectral libraries, current MS/MS spectrum predictors provide less accurate predicted spectra for MHC-associated peptides than their performance for other peptides. In this thesis, we built several MHC-associated peptide spectral libraries for training and evaluation purposes. We selected PredFull as our base model and performed transfer learning with these MHC-associated peptide libraries, which are much smaller than com- mon tryptic spectral libraries. The result showed that the fine-tuned model outperformed the original model significantly when predicting MHC-associated peptides.

Description

LC Subject Headings

Citation