UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Wigner negativity on the sphere

Loading...
Thumbnail Image

Date

2023-08-15

Authors

Davis, Jack

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

The rise of quantum information theory has largely vindicated the long-held belief that Wigner negativity is an indicator of genuine nonclassicality in quantum systems. This thesis explores its manifestation in spin-j systems using the spherical Wigner function. Common symmetric multi-qubit states are studied and compared. Spin coherent states are shown to never have vanishing Wigner negativity. Pure states that maximize negativity are determined and analyzed using the Majorana stellar representation. The relationship between negativity and state mixedness is discussed, and polytopes characterizing unitary orbits of lower-bounded Wigner functions are studied. Results throughout are contrasted with similar works on symmetric state entanglement and other forms of phase-space nonclassicality.

Description

Keywords

nonclassicality, entanglement, quantum information, phase space methods, quasiprobability, spin systems

LC Keywords

Citation