Show simple item record

dc.contributor.authorSalehi, Kiana
dc.date.accessioned2023-08-08 14:17:11 (GMT)
dc.date.available2023-08-08 14:17:11 (GMT)
dc.date.issued2023-08-08
dc.date.submitted2023-07-27
dc.identifier.urihttp://hdl.handle.net/10012/19656
dc.description.abstractAccording to the no-hair theorem, the unique characteristics of astrophysical black holes are their masses and spins. However, recent observations from the Event Horizon Telescope (EHT) images of M87 and Sgr A* have allowed us to place constraints on possible deviations from this theory. To interpret these observations and compare them to other near horizon scale observations, we introduce a model-agnostic framework that explores deviations while maintaining generality. We start by considering a general spherically symmetric metric, which effectively applies for a polar observer in the slow rotation limit and then follow by relaxing these constraints to axi-symmetric and stationary spacetimes. We propose a nonperturbative, nonparametric spacetime-domain characterization of shadow size and related measurements that makes explicit the nature and power (or lack thereof) of shadow-size-based constraints, and facilitates comparisons among observations and targets. Furthermore, we demonstrate that relying solely on shadow size measurements does not impose a direct limitations on the value of the gtt component of the metric. However, in the case of spherically symmetric spacetime, it can impose a constraint on the radial derivative of gtt, while a more intricate constraint arises for the axi-symmetric spacetime. Moreover, the measurement of shadows and potential future observations of multiple photon rings do not provide any valuable information concerning the ergo-region and frame-dragging in axi-symmetric spacetime.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectGravityen
dc.titlePhoton Rings and Shadow Size for General Integrable Spacetimesen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentPhysics and Astronomyen
uws-etd.degree.disciplinePhysicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Scienceen
uws-etd.embargo.terms0en
uws.contributor.advisorBroderick, Avery
uws.contributor.affiliation1Faculty of Scienceen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages