Show simple item record

dc.contributor.authorBarnett, Jacob 13:23:43 (GMT) 13:23:43 (GMT)
dc.description.abstractPseudo-Hermitian operators generalize the concept of Hermiticity. Included in this class of operators are the quasi-Hermitian operators, which define a generalization of quantum theory with real-valued measurement outcomes and unitary time evolution. This thesis is devoted to the study of locality in quasi-Hermitian theory, the symmetries and conserved quantities associated with non-Hermitian operators, and the perturbative features of pseudo-Hermitian matrices. An implicit assumption of the tensor product model of locality is that the inner product factorizes with the tensor product. Quasi-Hermitian quantum theory generalizes the tensor product model by modifying the Born rule via a metric operator with nontrivial Schmidt rank. Local observable algebras and expectation values are examined in chapter 5. Observable algebras of two one-dimensional fermionic quasi-Hermitian chains are explicitly constructed. Notably, there can be spatial subsystems with no nontrivial observables. Despite devising a new framework for local quantum theory, I show that expectation values of local quasi-Hermitian observables can be equivalently computed as expectation values of Hermitian observables. Thus, quasi-Hermitian theories do not increase the values of nonlocal games set by Hermitian theories. Furthermore, Bell's inequality violations in quasi-Hermitian theories never exceed the Tsirelson bound of Hermitian quantum theory. A perturbative feature present in pseudo-Hermitian curves which has no Hermitian counterpart is the exceptional point, a branch point in the set of eigenvalues. An original finding presented in section 2.6.3 is a correspondence between cusp singularities of algebraic curves and higher-order exceptional points. Eigensystems of one-dimensional lattice models admit closed-form expressions that can be used to explore the new features of non-Hermitian physics. One-dimensional lattice models with a pair of non Hermitian defect potentials with balanced gain and loss, Δ±iγ, are investigated in chapter 3. Conserved quantities and positive-definite metric operators are examined. When the defects are nearest neighbour, the entire spectrum simultaneously becomes complex when γ increases beyond a second-order exceptional point. When the defects are at the edges of the chain and the hopping amplitudes are 2-periodic, as in the Su-Schrieffer-Heeger chain, the PT-phase transition is dictated by the topological phase of the system. In the thermodynamic limit, PT-symmetry spontaneously breaks in the topologically non-trivial phase due to the presence of edge states. Chiral symmetry and representation theory are utilized in chapter 4 to derive large classes of pseudo-Hermitian operators with closed-form intertwining operators. These intertwining operators include positive-definite metric operators in the quasi-Hermitian case. The PT-phase transition is explicitly determined in a special case.en
dc.publisherUniversity of Waterlooen
dc.subjectQuantum Theoryen
dc.subjectExceptional Pointsen
dc.subjectLattice Modelsen
dc.subjectNonlocal Gamesen
dc.subjectBalanced Gain and Lossen
dc.subjectIndefinite Inner Product Spacesen
dc.subjectNon self-adjoint Hamiltoniansen
dc.subjectFree fermionsen
dc.titleLocality and Exceptional Points in Pseudo-Hermitian Physicsen
dc.typeDoctoral Thesisen
dc.pendingfalse and Astronomyen of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws.contributor.advisorForrest, James
uws.contributor.advisorJoglekar, Yogesh
uws.contributor.affiliation1Faculty of Scienceen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages