Locality and Exceptional Points in Pseudo-Hermitian Physics

dc.contributor.authorBarnett, Jacob
dc.date.accessioned2023-05-26T13:23:43Z
dc.date.available2023-05-26T13:23:43Z
dc.date.issued2023-05-26
dc.date.submitted2023-04-19
dc.description.abstractPseudo-Hermitian operators generalize the concept of Hermiticity. Included in this class of operators are the quasi-Hermitian operators, which define a generalization of quantum theory with real-valued measurement outcomes and unitary time evolution. This thesis is devoted to the study of locality in quasi-Hermitian theory, the symmetries and conserved quantities associated with non-Hermitian operators, and the perturbative features of pseudo-Hermitian matrices. An implicit assumption of the tensor product model of locality is that the inner product factorizes with the tensor product. Quasi-Hermitian quantum theory generalizes the tensor product model by modifying the Born rule via a metric operator with nontrivial Schmidt rank. Local observable algebras and expectation values are examined in chapter 5. Observable algebras of two one-dimensional fermionic quasi-Hermitian chains are explicitly constructed. Notably, there can be spatial subsystems with no nontrivial observables. Despite devising a new framework for local quantum theory, I show that expectation values of local quasi-Hermitian observables can be equivalently computed as expectation values of Hermitian observables. Thus, quasi-Hermitian theories do not increase the values of nonlocal games set by Hermitian theories. Furthermore, Bell's inequality violations in quasi-Hermitian theories never exceed the Tsirelson bound of Hermitian quantum theory. A perturbative feature present in pseudo-Hermitian curves which has no Hermitian counterpart is the exceptional point, a branch point in the set of eigenvalues. An original finding presented in section 2.6.3 is a correspondence between cusp singularities of algebraic curves and higher-order exceptional points. Eigensystems of one-dimensional lattice models admit closed-form expressions that can be used to explore the new features of non-Hermitian physics. One-dimensional lattice models with a pair of non Hermitian defect potentials with balanced gain and loss, Δ±iγ, are investigated in chapter 3. Conserved quantities and positive-definite metric operators are examined. When the defects are nearest neighbour, the entire spectrum simultaneously becomes complex when γ increases beyond a second-order exceptional point. When the defects are at the edges of the chain and the hopping amplitudes are 2-periodic, as in the Su-Schrieffer-Heeger chain, the PT-phase transition is dictated by the topological phase of the system. In the thermodynamic limit, PT-symmetry spontaneously breaks in the topologically non-trivial phase due to the presence of edge states. Chiral symmetry and representation theory are utilized in chapter 4 to derive large classes of pseudo-Hermitian operators with closed-form intertwining operators. These intertwining operators include positive-definite metric operators in the quasi-Hermitian case. The PT-phase transition is explicitly determined in a special case.en
dc.identifier.urihttp://hdl.handle.net/10012/19490
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectQuantum Theoryen
dc.subjectPseudo-Hermitianen
dc.subjectQuasi-Hermitianen
dc.subjectExceptional Pointsen
dc.subjectC*-Algebrasen
dc.subjectLattice Modelsen
dc.subjectPT-Symmetryen
dc.subjectNonlocal Gamesen
dc.subjectBalanced Gain and Lossen
dc.subjectIndefinite Inner Product Spacesen
dc.subjectNon self-adjoint Hamiltoniansen
dc.subjectFree fermionsen
dc.titleLocality and Exceptional Points in Pseudo-Hermitian Physicsen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentPhysics and Astronomyen
uws-etd.degree.disciplinePhysicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorForrest, James
uws.contributor.advisorJoglekar, Yogesh
uws.contributor.affiliation1Faculty of Scienceen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Barnett_Jacob.pdf
Size:
3.31 MB
Format:
Adobe Portable Document Format
Description:
Main article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: